Two Linear Algebra Problem

Tricky Idea

Posted by Airtnp on May 18, 2016

How to calculate this uncompleted Vandermonde determinant?

Origin

Solution: Consider this determinant

This is a complete Vandermonder determinant. So $\det{P} = \prod_{1 \leq j < i \leq n}\limits (x_i-x_j)$, $x_i \in (a_1, a_2, a_3, a_4, y)$.

For this product, we take the coefficient of component which $\deg{y} = 3$, this operation can be seen as a extending of $\det{P}$ on $y^3$, and we get the coefficient is just the $\det{A}$

How to conduct vector mixed product and triple product?

Origin

Mixed Product: $\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c}) = (\mathbf{a}\times\mathbf{b})\cdot \mathbf{c} = (\mathbf{c}\times\mathbf{a})\cdot \mathbf{b}$

Triple Product: $\mathbf{a}\times(\mathbf{b}\times\mathbf{c}) = \mathbf{b}(\mathbf{a}\cdot\mathbf{c}) - \mathbf{c}(\mathbf{a}\cdot\mathbf{b})$

Method 1

Einstein summation:

Method 2 Quaternions

$q = a+bi+cj+dk$

$\Re{q} = \frac{1}{2}(q+\overline{q})$, $\Im{q} = \frac{1}{2}(q-\overline{q})$

Property 1

$ij=k,\, jk=i,\, ki=j;\,ji=-k,kj=-i,ik=-j;i^2=j^2=k^2=ijk=-1$

Property 2

$bi+cj+dk \leftrightarrow (b, c, d) \in \mathbb{R}^3$

Property 3

Dot product and cross product of $\Im{q}$s is just as vectors

Property 4

$q_1\cdot q_2 = -\Re{q_1q_2}$

$q_1 \times q_2 = \Im(q_1q_2)$

Property 5

$q_1 \cdot q_2 = -\frac{1}{2}(q_1q_2+q_2q_1)$

$q_1 \times q_2 = \frac{1}{2}[q_1q_2] = \frac{1}{2}(q_1q_2-q_2q_1)$

$q_1q_2 = -q_1\cdot q_2+q_1\times q_2$

Property 6 (Jacobi Equation)

Property 7

$\forall q_1, q_2, q_3 \in \Im{\mathbb{H}}$

So $\Re{q_1q_2q_3} = \Re{q_1q_2q_3}$, $\Im{q_1q_2q_3} = \Im{q_1q_2q_3}$

Method 3 Use basis vector proof and linearity

Just prove it on basis vector.

More reading

Hodge* Operator

Exterior Product